Frequency Conversion Measurements with Vector Network Analyzer ZVR

Application Note 1EZ27_0L

Subject to change

23 October 1996, Peter Kraus

Products:

ZVR incl. Option ZVR-B4 ZVRE incl. Option ZVR-B4 ZVRL incl. Option ZVR-B4

Measurements on a double-converting front-end

1 Front-end block diagram

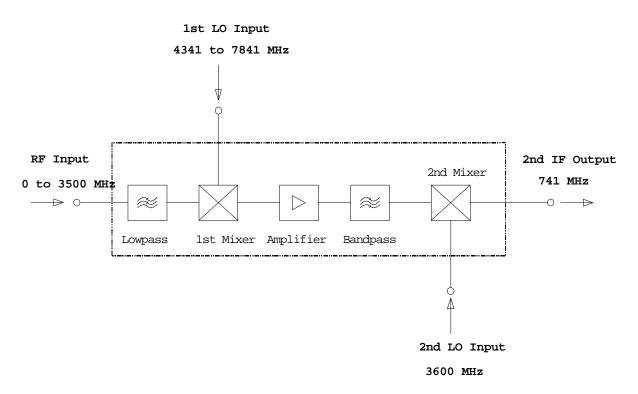


Fig. 1: Block diagram of DUT

Vector Network Analyzer ZVR is able to control two external generators via the IEC/IEEE bus in the frequency conversion mode. This feature allows to make automatic measurements on DUTs with up to two frequency converters. For the measurement of the conversion response over the whole frequency range, one of the two generators must be swept. Since this frequency variation is controlled via the IEC/IEEE bus, the sweep time must be increased (automatically) depending on the used generator. Very short sweep time is possible by the use of a generator SME or SMP and the IEC+TTL remote mode. In this case the generator operates in the frequency list mode triggered by ZVR.

In order to obtain a high accuracy of frequency conversion measurements, the option *Power Calibration ZVR-B7* is necessary. With this option the frequency response of the internal source and front-end of the ZVR will be corrected. Therefore errors at different input and output frequencies are avoided. S11, S21 and S22 measurements can be done.

Another method to increase accuracy is to use a reference converter (Option Reference Mixer Ports ZVR-B6) which serves to generate a reference signal. The advantage of this kind of measurement is that no power calibration is necessary and the phase and group delay difference to the reference converter can be measured. The disadvantage is that no absolute values of conversion gain and conversion delay are available.

2 Test setup with external reference converter (front-end)

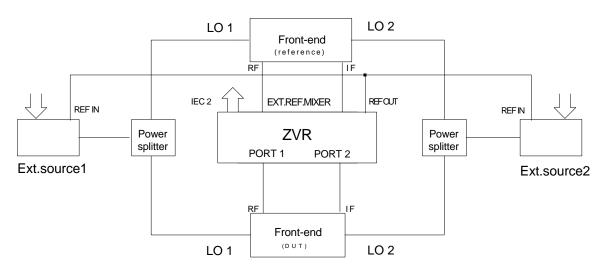


Fig. 2: Test setup

3 Measurement results

Fig. 3: Frequency response of front-end

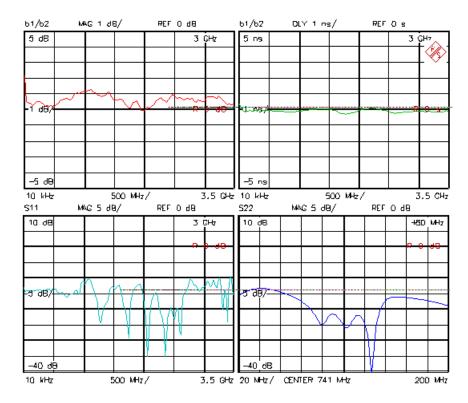


Fig. 4: Frequency response and delay difference to a reference front-end and input and output reflection

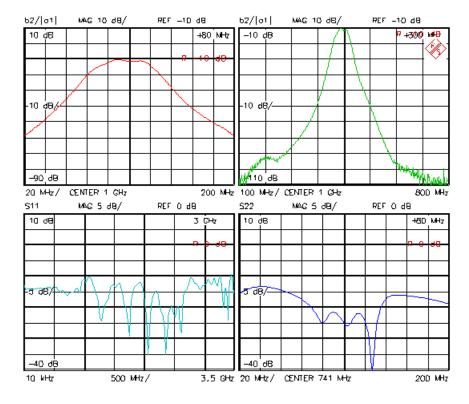
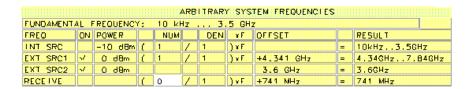



Fig. 5: Frequency response in the narrowband and wideband range

4 Measurement settings

	EXT SOURCES CONFIG							
SRC	REMOTE	TEC ADDR	TYPE					
1	IEC	28	SMP02					
2	TEC	19	SMT 06					

Fig. 6: Frequency response

					ARE	HTRAR	Y SYS	TEM FREQUENCY	ES	
FUNDAMENTAL FREQUENCY: 900 MHz 1.1 GHz										
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1	1	1) YF			900 MHz1.1GHz
EXT_SRC1	-/	O dBm	(0	/	1) vF	+5.341 GHz		5.34GHz
EXT SRC2	4 /	10 dBm						3.6 GHz	=	3.6GHz
RECEIVE			(1	1	1) vF	-1.741 GHz		841 MHz.,641 MHz

	EXT SOURCES CONFIG							
SRC	REMOTE	TEC ADDR	TYPE					
1	IEC	28	SMP02					
2	LEC	19	SMT06					

Fig. 7: Selectivity at 1 GHz (narrowband)

ARBITRARY SYSTEM FREQUENCIES										
FUNDAMENT.	FUNDAMENTAL FREQUENCY: 600 MHz 1.4 GHz									
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1	1	1) YF		=	600 MHz.,1,4GHz
EXT_SRC1	-/	O dBm	(0	/	1) vF	+5.341 GHz	=	5.34GHz
EXT SRC2	w/	10 dBm						3.6 GHz	=	3.6GHz
RECEIVE			(1	/	1) vF	-1.741 GHz	=	1,14CHz,,341 MHz

EXT SOURCES CONFIG							
SRC	REMOTE	IEC ADDR	TYPE				
1	TEC	28	SMP02				
2	TEC	19	SMT 06				

Fig. 8: Selectivity at 1 GHz (wideband)

Peter Kraus, 1ES3 Rohde & Schwarz 23 October 1996